#790 Separating the neural contributions to fMRI signal
through Neural Prior Recovery.
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Background Dataset and processing software

e Standard confound correction consists of modeling and regressing confounds, but, it is unclear whether | | = Multi-site dataset: representative survey of data quality issues; 17
it can account for confounds while preserving neural activity (Power et al. (2020). Cereb Cortex). sites (5 not included); N=15 scans per site (Grandjean et al. (2020).

Alternative solution: isolate pre-defined neural sources (i.e. neural priors) from all other sources Neurolmage.)

e Sub-goal 1, reliability: Model scan-specific fMRI confounds in all forms (spatial and temporal) « Simultaneous mesoscale calcium imaging and fMRI: 10 subjects, 3

e Sub-goal 2, specificity: maximize the relationship of recovered to neural activity session X 9 runs per subject; with excitatory cell calcium marker (SLC)

e Sub-goal 3, generalizability: automated framework with robust performance across datasets * Processing: RABIES (https://github.com/CoBrALab/RABIES)

Algorithm Development

A) | Complementary PCA (C-PCA) | B) | Neural Prior Recovery (NPR) | C)
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D) Toor comonen f Figure 1: A) Complementary principal component analysis (C-PCA). Dual regression (regress spatial components, then
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Q0.8 2 — Prior.2 PCA, 1.e. a set of components which maximize variance explained (Hardt (2014). IEEE 55th Annual Symposium). With this
= @ 9:1201 | L framework, we can introduce pre-defined prior components at each iteration, hence accounting for the priors and driving the
%o.& 2'0-125 convergence of other components towards a separate set differing from the priors. B) The Neural Prior Recovery (NPR)
= £ 0.100 algorithm. C-PCA 1s used in two steps: 1) neural priors of interest are provided as imput, and C-PCA finds all non-prior sources
% 0.4 © 0075 (1.e. confounds), 2) the non-prior sources are then provided as priors, so that the neural source can be recovered. C) To account
Ft) p—e @0.050 for both spatially and temporally-defined confound signatures (Ciric et al. (2018). Nature Protocol) in the first NPR step,
S 02 — Prior2 % C-PCA 1s conducted twice for computing temporal and then spatial components (1.e. spatiotemporal NPR). D) On the left,
X)Q — Prigrd| B T example of convergence for NPR after accounting for 4 non-prior components. On the right, convergence criteria exemplified
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5 B 10 15 20 25 a3g PO = 50 28 30 in the same scan for 3 priors simultaneously (criterion 1: spatial correlation between output and the neural prior; criterion 2:
Number of non-prior components  Number of non-prior components  the difference between the previous and current output (i.e. 1 - their correlation)).
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Figure 3: A) Using simultaneous calcium and fMRI imaging (figure adapted from Lake et al. 2020), B) a
prior of the somatomotor network was identified through group ICA in each modality independently
(displayed on 2D cortical surface). A network timecourse is derived in each modality, and the two
timecourses are then correlated after hemodynamic response function convolution of the calcium timecourse
gamma variate function: time to peak = 2.6 s, width = 1.2 s). fIMRI confound correction consisted of /

Figure 2: Impact of confounds on connectivity analyses, tested across 12 mouse fMRI acquisition
sites. The top plot displays the distribution of correlations between the scan-level fits and prior network
maps. The bottom plot shows the mean temporal correlation between the network timecourse and a set
of confound component timecourses measured through dual regression (using group-ICA confound

scrubbing + highpass 0.01Hz + motion/WM/CSF regression.

components described in Desrosiers-Gregoire et al. (2022. bioRxiv.); see example in figure 1C). (
\Nuisance regression was varied (3 different columns) to include the regression of 6 motion parameters/

+ WM/CSF signal, 6 motion parameters + global signal, or no regression.

Implications
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