CORTICAL QUANTITATIVE MRI METRICS ARE SENSITIVE TO PATHOLOGY IN PRECLINICAL ALZHEIMER'S DISEASE

Aurélie Bussy ${ }^{1,2}$, Alfie Wearn ${ }^{5}$, Raihaan Patel ${ }^{1,4}$, Giulia Baracchini55,6,7, Sylvia Villeneuve ${ }^{3,6}$, Judes Poirier ${ }^{3,6}$, John CS Breitner ${ }^{6}$, Gabriel A. Devenyi ${ }^{1,3}$, R. Nathan Spreng ${ }^{5,6,7}$ and M. Mallar Chakravarty ${ }^{1,2,3,4}$

Douglas

[^0] ${ }^{7}$ McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada

INTRODUCTION

CONTEXT

Alzheimer's disease (AD) prevalence increases.
Amyloid- β and p -tau are the main pathological hallmarks of $A D^{\text {. }}$.
Multifactorial disease with microstructural changes (myelin \downarrow, iron \uparrow). Current tools to study AD pathology are invasive (PET, CSF, blood..).

GOAL
Non-invasive quantitative MRI (qMRI) to estimate myelin, iron and water Test if qMRI metrics sensitive of pathology in preclinical AD.

METHODS \#I

PARTICIPANTS

94 cognitively normal older adults with parental AD-history ${ }^{2}$ Ages 59-85 years; 67 females; mean/SD MoCA: 28.3/I. 5

METHODS \#2

CORTICAL PARCELLATION

Non-negative matrix factorization ($k=2$ to $k=20)^{4}$
Stability analyses + reconstruction error

PET GROUPS
Amyloid SUVR threshold $=1.327$ (i.e last quartile) Tau SUVR threshold $=1.139$ (i.e last quartile)

STATISTICS

- Linear models (R 4.I.3)

NMF weights ~Amyloid_group x Tau_group + Age + Sex $\mathrm{p}<0.05$ corrected for FDR across 48 models (8 components $\times 6$ metrics)

MRI IMAGES

3T Siemens Prisma scanner (32-channel)
MRI Protocol : Multi-parametric : 3D FLASH acquisition $\left(1 \mathrm{~mm}^{3}\right)^{3}$
MPRAGE sequence ($1 \mathrm{~mm}^{3}$)

RESULTS \#2

B) Differences between low and high tau groups

Figure 3: A) I) Plots of age-related component-weights changes. 2) Heatmap demonstrating uncorrected p-values

Fig IA shows the 8 cortical components identified, while IB shows individual level microstructural weightings for each component. Increased age was related to lower CT, RI, PD and MTs to different extent (Fig 2A). In high tau PET individuals, we found widespread higher cortical PD, while higher MTs was found in the temporal lobe (Fig 2B).

CONCLUSION

Beyond the expected age-related CT and myelin decrease, our results demonstrated that tau accumulation was strongly related to higher PD (interpreted as a sign of macromolecular content loss) ${ }^{5}$.
I. Braak \& Braak 1991, Tremblay-Mercier et al. 2021, 3 Callaghan et al. 2014, Patel et al.
2020, Noble et al 2013

[^0]: 'Computational Brain Anatomy (CoBrA) Laboratory, Douglas Mental Health University Institute, Montreal, Quebec, Canada
 ${ }^{2}$ Integrated Program in Neuroscience, McGill University, Montreal, Canada
 ${ }^{3}$ Department of Psychiatry, McGill University, Montreal, Quebec, Canada
 ${ }^{4}$ Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada ${ }^{6}$ Centre for the Studies on the Prevention of AD, Douglas Mental Health University Institute,Verdun, Quebec, Canada

